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Abstract 

'An explicit combinatorial formula for the number of Kekulé structures of a 
hexagon-shaped benzenoid system is deduced. Thus, the validity ot the previousl?, 
proposed, but hitherto unproved formulas of Everett (from 1951), Woodger (t'rt>,~~ 
1951), and Cyvin (from 1986) is confirmed. The proof is based on the applic~t ~,~~ 
o f t he John  Sachstheorem. 

1. Introduction 

The enumeration of Kekulé structures of hexagon-shaped benzenoid hydro- 
carbons is a problem that was considered even in the earliest papers on the number of 
Kekulé structures [1,2]. A general hexagon-shaped benzenoid system Õ(k, m, n) has 
the following structure: 

11 o ( k , m , n )  
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The parameters /«, m and n denote the number of hexagons on the respective side of 
O(k, m, n). In the above example,k = 2, nz = 4, n = 3. 

Throughout the present note, "hexagon-shaped" means that in the general 
case the benzenoid system considered has the form of a hexagon with unequal sides 
(as is the case in the above example). If all the three sides of O(k, m, n) are equal 
(i.e. k = m = n), then the symmetry group of the molecule is D6h. If k = m 4: n, the 
molecule will have dihedral symmetry D2h. In the case where all the parameters are 
mutuNly different, the respective symmetry group is C2h. 

The symbol O(k, m, n) is the same as used previously [3] and is part of the 
systematic notation of  classes of benzenoid systems put forward by two of the present 
authors [4]. 

Gordon and Davison [1] reported a remarkabte combinatorial formula, 

n-1 (2n + i) 
K{O(tl, n, n)} : 1--I \ ,l (1) 

;=0 , ( ' l + i )  '1l 
which reproduced the number of Kekulé structures of the O(H, n, n) series (benzene, 
coronene, circumcoronene, etc.). According to [1],  the discoverer of expression (1) 
was M.R. Everett. In [1], a generalization of  (1) was also givem valid for the dihedral 
hexagons O(m, m, n): 

/ \ 

_~ { r a + i l + i }  
F t l  

K{O(m, .t, /t)} = I-I \ " / (2) 

This formula was attributed [1] to M. Woodger. Neither Everett nor Woodger seem to 
have revealed the method by which they deduced (1) and (2). 

Recently, Cyvm [3] came to the extension of the Everett -Woodger formula 
to the C2h hexagons, viz. 

J \ 

k-1 (m +lz + i~ 

K{O(k ,m,  rz)} = [-I \ n / (3) 
/=0 (n+i) ' ,  

but again no proof has been given. 

In spite of  a number of  publications [1 .... 11] in which the %rmulas (1) (3) 
have been mentioned and/or applied, no report on a stringent mathematical derivation 
of (1)-.(31) could be found in either the chemical or mathematical literature. 
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In the present work, we give for the first time a mathematical proof of (3) and 
thus also its special cases ( l )  and (2). 

2. T h e  J o h n - S a c h s  t h e o r e m  

The proof technique employed in the present work is based on the application 
o fa  recent modification [12] of a theorem by John and Sachs [13]. 

In order to formulate the John--Sachs theorem, we conventionally draw the 
benzenoid system B so that some of its edges are vertical. Then, a vertex of B is called 
a peak (respectively, valley) if all its first neighbours lie below (respectively, above) it. 
A necessary condition for the existence of Kekulé structures in B is that the number of 
peaks equals the number of valleys. Let this number be n and let the peaks and 
valleys be labeled by Pl,  P2 . . . . .  t2n and vl ,  v 2 . . . . .  u,7. As an example, 0(2,  4, 3) 
m a y  serve : 

Pl P'-' P'-' 

Vl v 2 v 3 

The intersection graph Gq of the /th peak and the ] th valley of B is the 
subgraph of B spanned by the vertices of B which are accessible from Pi by 
exclusively going downwards and simultaneously accessible from vj by exclusively 
going upwards [12]. The intersection graphs are themselves benzenoid systems or 
simple derivatives thereof [14]. Exceptionally, Gq may be a path with an even number 
of vertices or the null graph (the graph without vertices). 

According to [13], 

K B} = [det WI, (4) 

where W is a square matrix of order n whose i/entry was shown [12] to be equal to 
K{Gq}, the number of Kekulé structures of the intersection graph Gq. (If G ü is the 
null graph, then one has to set formally KIG ü} = 0. If G ü is a path with an even 
number of vertices then, of  course, K{G ü} = 1.) Note that the number of peaks and 
v'~leys, and therefore the order of the matrix W, depend on the way in which we dräw 
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a particular benzenoid system. Equation (4), on the other hand, is invariant to the 
change in the orientation of  B. For further details on eq. (4), see [12 ,14] .  

In the case of  hexagons, we may label the peaks and valleys so that Pi+l 
(respectively, ui+ ~ ) lies to the right o f  Pi (respectively, öl) , i = 1 . . . .  ,n - 1. Then, 
eq. (4) is further simplified [14,15] : 

K{B} = der I1/. (5) 

In order to exemplify the J o h n - S a c h s  formula (5), we present in fig. 1 the 
nine intersection graphs of  0 ( 2 , 4 ,  3). 

g~ 

c33; I,,~] = (~) 

Fig. 1. The nine intersection graphs of 0(2,  4, 3) dramen as black 
silhouettes on the background of the benzenoid system (hcxagon). 
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3. Determinant formula for the number of Kekulé structures 
o f  O ( k ,  m ,  n)  

An inspection of  fig. 1 suggests that the intersection graphs of  O(k,  m, n) are 
either null graphs or paths with an even number  of  vertices or parallelogram-shaped 
benzenoid systems. The general form of  a parallelogram-shaped benzenoid is 

L ( a , b )  

where a and b indicate the number of  hexagons on the respective sides of  the parallelo- 
gram. (In the above example, a = 4, b = 3.) It has been known for a long time [1] 
that 

K { L ( a , b ) }  = ( a + b ) =  (a  + b )  
a b " 

We note in passing that also the above formula can be considered as a special 
oase of  (2) or (3), when one of  the parameters k, m, n is set equal to one. In eqs. (2) 
and (3), k, m and t7 are assumed to be greater than unity. More about  these details 
can be found in [4] .  

The case where the intersection graph is a path with an even number  of  vertices 
can be treated as the parallelogram L (a, b), with b = 0. Also, the null graph can be 
fom~ally described as L(a, b), with a < 0 or b < 0. Note that null graphs occur 
among the intersection graphs of  O(k,  m, n) only if n - k > 1. 

It is now not  difficult to see that for i = 1 , 2 , . .  ,n and j = 1 ,2  . . . .  ,n, 

Gii = L ( m + i - j , k - i + / ) ,  

and consequently 

Ita/--- ( m + k  ) 
m + i - j ' 
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Applying the John-+Sachs formula (5), we now straightforwardly arrive at 
the expression 

K{O(k,  m, n)} = F(k, nz, n), (6) 

where 

F ( k ,  m, n) = 

(nz+  k)  m +  ( m +  
777 - \ tlz - 

m + 1 m km - 1 

)C )( ) m + k m + k rn + k 
/n + n -  1 tn + 1 1 -  2 nz + 1 1 - 3  

m + k 
m -  n + 1 

m + k ) 
m - 11 + 2 

m + k 

171 ) 

(7) 

4. P r o o f  o f  f o r m u l a  (3) 

hr order to prove fornmla (3), it is necessary to demonstrate that the right- 
hand side of (3) coincides with F(k, m, i7). We will perform the proof in two steps. It 
will first be established that F(k, m, tl) obeys the combinatorial identity (8), given in 
theorem 1 below. Eventually, we show that F(k,  m, n) is invariant to the permutation 
of the parameters k, m and n. We first need an auxiliary result. 

LEMMA 1 

Tlle below determinant D n of order/1, 

( k + n - 1 )  ( k + n -  1) 
t l  - -  1 , lZ - -  9 

n - 1 1l  - 2 

n - 1 n - 2  

is equal to unity for all values of/7 ~> 1. 

k + n -  1 
0 ) 

k + rz - 2) 
0 
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Proof 

Dn+ 1 

Consider the determinant D n + 1, viz. 

( k + n )  ( I t + n )  
n n -  1 "'" 

( k + n - l )  ( k  + , ~ -  1) 
= t l  ? l  - -  1 " ' "  

k + n) 
0 

( k + n -  1) 0 

t k ) 
0 

For i = 1 , 2 , . . .  , n -  1,the ( i+  1)th row ofDn+ 1 
this transformation will not change the value of D, + 1 - Bearing in mind the identity 

p - l )  = - 

+,,-1) 
n - 1 1 l -  ~ 

n - 1 n -  2 

(:)( 
we conclude that 

DH + I = 

is subtracted from the ith row; 

k + n - 2) 
0 

= ( "  = 1 0 

from which it is immediately seen that 

D , + ~  = D , ,  . 

Lemma 1 follows now from the fact that D 1 

k + n - 1) 0 
0 
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THFOR1;M 1 

F (k ,  m, n) satisfies the following relation: 

n - ,  ( m  + k + i) 

--I IH F(k,  m. n) = (8) i:o \('n+i)"z 

P! "o o f  

We transform the determinant (7) so that the (i + 1)th row is added to the ith 
row, for i = 1 , 2 , 3  . . . . .  1l - 1. Because of  the identity 

q q + l  q + l  ' 

we obtain 

F ( k ,  m,  ~z) = 

11l + 1 m 

l,z +k + l ) ( t , l  +]< + l )  
m + 2 m + 1 

( m  + k +  1 1 ) ( m + k + l )  
m + n - rn + n - 2 

( m + k  ) ( ,,l + k  ) 
m + n - 1 m + n - 2 

m - lz + 2 

m + k + 1 ) 
m - n + 3 

m + k + 1) 
Ill 

C,,+k) 
1"17 

Now, for i = 1 ,2  . . . . .  n - 2, the (i + 1)th row is added to the i th row yielding 
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Then, for i = 1, 2 . . . . .  n - 3, the (i + 1)/h row is added to the i th  row, etc. Con- 
tinuing this procedure, we finally obtain 

Bearing in mind that 

we can now easily transfoml the right-hand side o f ( 9 ) i n t o  
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7~ 
+ 

I 

7-z 

+ 

I I 

+ 
+ 

I + 

+ 

~+ ~+ 

o 

I 

+ 

I 

f ' q  

+ 

I 

I 

+ 

I 

c'q 

+ 

- +  
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Using (10) once again, we arrive at 

where D n is defined in lemma 1. According to lemma 1, D n = 1, and thus the identity 
(18) is proved. • 

THEOREM 2 

F(k,  m, n) = F(k ,  n, m) = F(m,  k, n) = F(m,  n, k) = F(n,  k, m) = F(n,  m, k). 

Proof 

It is intuitively clear that the statement of theorem 2 must hold because there 
were no restrictions on the ordering of the sides k, m, n of the hexagon-shaped 
benzenoid system considered. However, the formal demonstration of the validity of 
theorem 2 is somewhat more complicated. As already explained in the introductory 
part of this section, theorem 2 provides a necessary step in the proof of  eq. (3). It 
is sufficient to demonstrate that two of the above relations hold, viz., 

Because of eq. (8), the condition (11) is equivalent to 

which is obviously satisfied. 

Proof  o f  (12) 

Transforming the right-hand side of  eq. (8), one obtains 
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\ m ] ~,+ ~~, ( , _ # ) . =  m + n - 1 

n - 1 

= (11l + k)"  [(111 + k + 1 ) n - l ( m  + k + 2) n - 2  . . .  ( , l  + k + H - 1 ) 1  [ 2 " - 2 " 3 n - 3 . . . ( n  

\ m [(m + l ) ( I c + l ) ] " - l [ ( m  + 2 ) ( k + 2 ) ] " - 2  . . . [ ( m  + n -  1 ) ( k + n - ]  

Because of ( , n + k ) =  (m +k), the latter expression will not change its value if the 
" r n  k 

parameters k and m are interchanged. Thus, F(k ,  m, n) obeys the condition (12). • 
Therefore, also theorem 2 is proved. • 
Fonnula (3) is now obtained from (6) and (8) by a consecutive application of 

(11) and (12). Fonnulas (2) and (1) are obvious, special cases of(3). 

This completes the proof of the Everett- Woodger-Cyvin combinatorial 
fommla for the number of Kekulé structures of a hexagon-shaped benzenoid hydro- 
carbon. 
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